

Single Crystal Diffuse Scattering

Ray Osborn

Neutron and X-ray Scattering Group Materials Science Division Argonne National Laboratory

Outline

- What is diffuse scattering?
 - What does it look like?
 - What causes it?
 - Who started it?
- What is it good for?
 - A random walk through disordered materials
- How do I model it?
 - A few equations
 - · Rules of thumb
- Case Study 1: Diffuse scattering from vacancies in mullite
- Case Study 2: Huang scattering in bilayer manganites
- How do I look at static disorder?
 - Neutrons vs X-rays
 - Corelli Diffuse scattering with elastic discrimination
- Diffuse scattering the musical

Bragg Scattering vs Diffuse Scattering

Bragg Scattering
Average Structure

Diffuse Scattering
Deviations from the Average Structure

Single Crystal Diffuse Scattering in 3D

Simple Example of Disorder

- In these examples, 30% of atoms (blue dots) have been replaced by vacancies (green dots)
 - · Left-Hand-Side: random substitution
 - Right-Hand-Side: high probability of vacancy clusters
 - Thanks to Thomas Proffen

Bragg Scattering

- Bragg scattering is determined by the average structure.
 - Since the average vacancy occupation is identical, both examples have identical Bragg peaks

National School on Neutron & X-ray Scattering - 2016

Diffuse Scattering

- The diffuse scattering is quite different in the two examples
 - Random vacancy distributions lead to a constant background (Laue monotonic scattering)
 - Vacancy clusters produce rods of diffuse scattering connecting the Bragg peaks

An Ultra-Short History of Advances in Diffuse Scattering

Yttria-Stabilized Zirconia

T. Proffen and T. R. Welberry J. Appl. Cryst. 31, 318 (1998)

What is it good for?

Science Impacted by Diffuse Scattering

- Subjects identified at the Workshop on Single Crystal Diffuse Scattering at Pulsed Neutron Sources
 - Stripes in cuprate superconductors
 - Orbital correlations in transition metal oxides (including CMR)
 - Nanodomains in relaxor ferroelectrics
 - Defect correlations in fast-ion conductors
 - Geometrically frustrated systems
 - Critical fluctuations at quantum phase transitions
 - Orientational disorder in molecular crystals
 - Rigid unit modes in framework structures
 - Quasicrystals
 - Atomic and magnetic defects in metallic alloys
 - Molecular magnets
 - Defect correlations in doped semiconductors
 - Microporous and mesoporous compounds
 - Host-guest systems
 - Hydrogen-bearing materials
 - · Soft matter protein configurational disorder using polarization analysis of spin-incoherence
 - Low-dimensional systems
 - Intercalates
 - Structural phase transitions in geological materials

http://www.neutron.anl.gov/diffuse/>

Diffuse Scattering from Metallic Alloys

Short-range Order in Null Matrix ⁶²Ni_{0.52}Pt_{0.52}

J. A. Rodriguez, S. C. Moss, J. L. Robertson, J. R. D. Copley, D. A. Neumann, and J. Major Phys. Rev. B 74, 104115

National School on Neutron & X-ray Scattering - 2016

Diffuse Scattering from a Fast-Ion Conductor

Diffuse Scattering from Molecular Solids

Diffuse Scattering from Relaxor Ferroelectrics

G. Xu, P. M. Gehring, G. Shirane, Phys. Rev. B 72, 214106 (2005).

National School on Neutron & X-ray Scattering - 2016

Magnetic Diffuse Scattering from Geometric Frustration

S.-H. Lee et al Nature 418, 856 (2002)

How do I model it?

A Few Equations

V. M. Nield and D. A. Keen *Diffuse Neutron Scattering From Crystalline Materials* (2001) T. R. Welberry *Diffuse X-ray Scattering and Models of Disorder* (2004)

$$I = \sum_{i} \sum_{j} b_{i} b_{j} \exp(i\mathbf{Q} \cdot \mathbf{r}_{ij})$$

J. M. Cowley, J. Appl. Phys. 21, 24 (1950)

$$I = \bar{b}^2 \sum_{ij} \exp(i\mathbf{Q} \cdot \mathbf{r}_{ij}) + N(\bar{b}^2 - \bar{b}^2); \ \bar{b}^2 = (c_A b_A + c_B b_B)^2; \ \bar{b}^2 = c_A c_B (b_B - b_A)^2$$

Cowley Short-Range Order

$$I_{diffuse} = Nc_A c_B (b_B - b_A)^2 + \sum_{ij} \alpha_i c_B c_A (b_B - b_A)^2 \exp(i\mathbf{Q} \cdot \mathbf{r}_{ij}); \quad \alpha_i = \left(1 - \frac{p_i}{c_A}\right)$$

Warren Size Effect $I_{diffuse} = Nc_A c_B (b_B - b_A)^2 \left(1 + \sum_{ij} \alpha_i \exp(i\mathbf{Q} \cdot \mathbf{r}_{ij} + \sum_{ij} \beta_i \exp(i\mathbf{Q} \cdot \mathbf{r}_{ij}) \right); \ \beta_i = f(\epsilon_{AA}^i, \epsilon_{BB}^i)$

Borie and Sparks Correlations

$$I = \sum_{i} \sum_{j} b_{i} b_{j} \exp\left(i\mathbf{Q} \cdot (\mathbf{R}_{i} - \mathbf{R}_{j})\right) \left[1 + i\mathbf{Q} \cdot (\mathbf{u}_{i} - \mathbf{u}_{j}) - \frac{1}{2} \left(\mathbf{Q} \cdot (\mathbf{u}_{i} - \mathbf{u}_{j})\right)^{2} + \ldots\right]$$

Three-Dimensional Pair Distribution Functions

- The ability to measure three-dimensional S(Q) over a wide range of reciprocal space provides the 3D analog of PDF measurements.
 - Total PDFs if Bragg peaks and diffuse scattering can be measured simultaneously
 - Δ-PDFs if the Bragg peaks are eliminated
 - using the punch and fill method
- This would allow a model-independent view of the measurements in real space.

The three-dimensional pair distribution function analysis of disordered single crystals: basic concepts

Thomas Weber* and Arkadiy Simonov

Laboratory of Crystallography, ETH Zurich Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland

Thermal Diffuse Scattering

- Lattice vibrations produce deviations from the average structure even in perfect crystals
- X-ray scattering intensity is given by the integral over all the phonon branches at each Q

$$I_0 \propto f^2 e^{-2M} \sum_{j=1}^6 \frac{|\mathbf{q} \cdot \hat{\mathbf{e}}_j|^2}{\omega_j} \coth\left(\frac{\hbar \omega_j}{2k_B T}\right).$$

M. Holt, et al, Phys Rev Lett 83, 3317 (1999).

Some Rules of Thumb (thanks to Hans Beat Bürgi)

Reciprocal space

Direct space

Only sharp Bragg reflections 3D-periodic structure

no defects

2D-periodic structure Sharp diffuse rods

perpendicular to the streaks

disordered in streak directions

Sharp diffuse planes 1D-periodic structure

perpendicular to the planes

disordered within the plane

OD-periodic structure

no fully ordered direction

Diffuse clouds

Case Study 1: Mullite

Mullite - A Case Study

- ▶ Mullite is a ceramic that is formed by adding O²+ vacancies to Sillimanite
 - Sillimanite has alternating AlO₄ and SiO₄ tetrahedra
 - Mullite has excess Al³⁺ occupying Si²⁺ sites for charge balance
- This results in strong vacancy-vacancy correlations

Sillimanite: Al₂SiO₅

Mullite: $Al_2(Al_{2+2x}Si_{2-2x})O_{10+x}$

B. D. Butler, T. R. Welberry, & R. L. Withers, Phys Chem Minerals 20, 323 (1993)

Measuring X-ray Diffuse Scattering with Continuous Rotation Method

Pilatus 2M Detector

- The sample is continuously rotated in shutterless mode at 1° per second 0 200 400
- A fast area detector (e.g., a Pilatus 2M) acquires images at 10 frames per second
 - i.e., 3600 x 8MB frames ~ 30GB every 6 minutes
- The detector needs low background, high dynamic range, and energy discrimination
 - Ideally, this is performed with high-energy x-rays, e.g., 80 to 100 keV

3D Diffuse Scattering in Mullite

- There is strong diffuse scattering throughout reciprocal space
- The shape of the diffuse scattering is strongly dependent on the value of QI
- ▶ There are incipient superlattice peaks at $\mathbf{Q} = 0.5 \, c^* + 0.31 \, a^*$

Monte Carlo Analysis

- In a classic analysis, Richard Welberry and colleagues developed a set of interaction energies to model mullite disorder
- Interaction energies were initialized:
 - insights from chemical intuition
 - insights from the measured diffuse scattering
- The diffuse scattering was calculated using a Monte Carlo algorithm to generate vacancy distributions first in 2D slices and then in 3D

$$\begin{split} P_{i} &= \frac{e^{-V_{i}}}{1 + e^{-V_{i}}}, \\ \text{where,} \\ V_{i} &= \frac{\sum_{j}^{} E_{ij}}{kT} + \frac{(N_{v} - N_{v}^{o})^{2}}{N_{v}^{o}} \operatorname{sgn}(N_{v} - N_{v}^{o}). \end{split}$$

Interatomic vector	α_{lmn}	Interatomic vector	α_{lmn}
$\frac{1}{2}$ (1 1 0)	-0.24	⟨0 2 0⟩	+0.13
[1 1 0]	-0.23	$\frac{1}{2}$ (3 1 0)	+0.22
[1 - 1 0]	-0.05	$\frac{1}{2}\langle 1 \ 3 \ 0 \rangle$	-0.01
⟨1 0 0⟩	-0.06	⟨1 0 1⟩	+0.07
⟨0 1 0⟩	+0.22	⟨0 1 1⟩	-0.12
⟨0 0 1⟩	-0.03	$\frac{1}{2}$ (3 3 0)	+0.17
$\frac{1}{2}[1-12]$	+0.12	〈1 1 1〉	-0.01
$\frac{1}{2}[1\ 1\ 2]$	+0.12	$\frac{1}{2}$ (3 1 2)	-0.11
$\langle 2 \ 0 \ 0 \rangle$	-0.12	$\frac{1}{2}\langle 3 \ 3 \ 2 \rangle$	-0.07

B. D. Butler, T. R. Welberry, & R. L. Withers, Phys Chem Minerals 20, 323 (1993)

Monte Carlo Analysis Results

Vacancy Short-Range Order in Mullite A First-Principles Approach

$$E(\sigma) = J_0 + \sum_{i} \sigma_i J_i + \sum_{i,j} J_{ij} \sigma_i \sigma_j + \sum_{ijk} J_{ijk} \sigma_i \sigma_j \sigma_k + \dots$$

Peter Zapol & Anh Ngo

Lowest Energy 3:2 Mullite Structure from Kinetic Monte Carlo Calculation

Case Study 1: Bilayer Manganites

Diffuse Scattering from Jahn-Teller Polarons

Huang Scattering

$$I(\mathbf{Q}) = \sum_{m,n} e^{i\mathbf{Q}\cdot(\mathbf{R}_m - \mathbf{R}_n)} f_m f_n e^{-W_m} e^{-W_n} \langle (\mathbf{Q} \cdot \mathbf{u}_m)(\mathbf{Q} \cdot \mathbf{u}_n) \rangle$$

$$I_{POL}(\mathbf{Q}) = N |F_{\mathbf{G}}|^2 \sum_{\alpha,\beta,\gamma,\delta} Q_{\beta} Q_{\delta} \left(\sum_{j,j'} \frac{\varepsilon_{\alpha,\mathbf{q},j} \varepsilon_{\beta,\mathbf{q},j}^* \varepsilon_{\gamma,\mathbf{q},j'}^* \varepsilon_{\delta,\mathbf{q},j'}}{\omega_{\mathbf{q},j}^2 \omega_{\mathbf{q},j'}^2} \frac{1}{\underline{j}_{m,n}} \mathfrak{I}_{m,\alpha} \mathfrak{I}_{m,\alpha} \mathfrak{I}_{n,\gamma} e^{i\mathbf{q} \times (\mathbf{R}_m - \mathbf{R}_n)} \right)$$

$$I_{TDS}(\mathbf{Q}) = N |F_{\mathbf{G}}|^2 \left(\frac{kT}{2M}\right) \sum_{\beta,\delta} Q_{\beta} Q_{\delta} \left(\sum_{j} \frac{\varepsilon_{\beta,\mathbf{q},j}^* \varepsilon_{\delta,\mathbf{q},j}}{\omega_{\mathbf{q},j}^2}\right) \dot{\mathbf{f}}$$

$$u_{m,\delta} = \int \frac{d^3q}{\left(\frac{2\pi}{a}\right)^3} \sum_{\beta} \left(\sum_{j} \frac{\varepsilon_{\beta,\mathbf{q},j}^* \varepsilon_{\delta,\mathbf{q},j}}{\omega_{\mathbf{q},j}^2} \frac{1}{j} \sum_{n} \mathfrak{I}_{n,\beta} e^{i\mathbf{q} \times (\mathbf{R}_m - \mathbf{R}_n)} \right)$$

B. Campbell et al Phys. Rev. B. 67, 020409 (2003)

TDS + Huang scattering

Cooperative Jahn-Teller Distortions

U. Ruett, C. D. Ling, Z. Islam, and J. W. Lynn, Physical Review B **65**, 014427 (2001)

Origins of Stripe Formation

- Stripe formation is a very common motif of disordered systems
- It is the response of a system with interactions that compete on different length scales
 - e.g., long-range repulsion vs short-range attraction $^{-12}$ -18

C. Reichhardt, C. J. Olsen, I. Martin & A. Bishop, EPL 61, 221–227 (2003).

Bilayer Manganites Revisited

Huang Scattering as a Function of (Qh, Qk, Ql)

Expanding the Concept of a Data Set

How do I look at static disorder?

Importance of Elastic Discrimination

T. R. Welberry et al J. Appl. Cryst. 36, 1400 (2003)

Measuring Large Volumes of Reciprocal Space

Conventional Time-of-Flight Neutron Methods

White Beam: efficient

NO energy discrimination

Fixed k_i : energy resolved

Cross Correlation Chopper

TOF Laue Diffractometer

- highly efficient data collection
- wide dynamic range in Q

Statistical Chopper

- elastic energy discrimination
- optimum use of white beam

Sample with: elastic scattering

$$\hbar\omega = 0$$

inelastic excitations

$$\hbar\omega = +E_{c}$$

$$\hbar\omega = +E_0$$

$$\hbar\omega = -E_0$$

 $S(t_1,t_2)$

Corelli

Cross Correlation in Action

Before cross-correlation

chopper phase

First Results

La_{0.7}Ca_{0.3}MnO₃

► PbMn_{1/3}Nb_{2/3}O₃-30%PbTiO₃

The Future

- High-Energy X-rays
 - Absorption lengths similar to neutrons
 - Most existing detectors have low efficiency but alternatives exist, e.g. CdTe
- Micro-diffuse scattering
 - Benefiting from increased brightness of, e.g., APS Upgrade
- Increasing use of ab initio computational modeling
 - Allowing more complex systems to be investigated
 - Less dependence on intuition in modeling
- Enhanced analysis tools
 - Machine learning
 - Correlated data analysis
 - Easier co-refinement of neutrons and x-rays

Atlas of Optical Transforms, Harburn, Taylor and Welberry (1975)

A Few References

- T. R. Welberry & B. Butler, Chem Rev **95**, 2369–2403 (1995).
- F. Frey, Acta Cryst B **51**, 592–603 (1995).
- T. R. Welberry & D. J. Goossens, Acta Cryst A **64**, 23–32 (2007).
- D. A. Keen & A. L. Goodwin, Nature News 521, 303–309 (2015).

Diffuse Scattering Song

- Come eager young scholars so tender and new I'll teach you diffraction - what I says mostly true Between the Bragg Peaks lies a world where you see Fluctuations and defects- they stand out plane-ly
- Chorus
 For its dark as a dungeon between the Bragg peaks
 But here in the darkness each defect speaks
 It gathers- from throughout- reciprocal space
 And re-distributes all over the place.
- Between the Bragg peaks one thing that we see Is TDS on our CCD Intensity totals are conserved- you can't win It steals from the Bragg peaks that stay very thin
- Substitutional alloys can cause quite a stir
 The shorter the length scale the greater the blur
 With care you can find out the bond length between
 Each atom pair type-the measurements clean
- Dislocations and other- type 2 defects
 Destroy the Bragg peaks -they turn them to wrecks
 But near the Bragg peaks- you still can see
 Intense diffraction continuously
- Many -are- the defects you find
 Between the Bragg peaks where others are blind
 So go tell your friends and impress your boss
 You've new understanding -with one hours loss

